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ABSTRACT 

We show by way of examples that  the essential range of a nonabelian 

cocycle is in general not invariant under cocycle cohomology, and differs 

in general from the essential range of an induced cocycle. 

1. Pre l iminar ies  

Let (12, ~', P) be a non-atomic probability space, and let O be an ergodic auto- 
morphism of (~, ~', ]P) preserving the probability measure P. 
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A measurable map A(-): f~ -+ Gl(d) from the probability space (f~, ~-, F') to the 

general linear group Gl(d) equipped with its Borel a-algebra generates a / /near  

cocycle over the dynamical system (f~, ~) via 

{ A(O'~-lw)... A(w), n > O, 
~PA (n,  r : =  I,  n = O, 

A-l((?nw).. .  A-I (0-G;) ,  n < 0. 

Conversely, if we are given a linear cocycle over 0, then its time-one map is a 

measurable linear map. Therefore, the correspondence between A and ~A is 

one-to-one so that we can identify r with A and speak of the cocycle A. 

The above construction applies to any measurable group G in place of Gl(d), 

and we shall then speak of a G-cocycle and a G-map. 

Since we deal with discrete time cocycles we can always neglect sets of null mea- 

sure, and often omit the P-almost sure statement in equations between 

measurable functions. 

Two G-cocycles A and B are called G-cohomologous  if there exists a G-map 

C such that  for almost all w E f~ 

B(co) = C(Ow) -1 o A(oa) o C(oa). 

In this case C is called a G-cohomology  and we write A ~- B. A G-cocycle which 
is G-cohomologous to the trivial G-cocycle, i.e. the cocycle identically equal to 

the identity of G, is called a G-coboundary .  

The following notion of essential range was introduced by Araki and Woods [1] 

and Krieger [4] for studying Radon-Nikodym cocycles, continued by Schmidt [5] 

for abelian cocycles of Z-actions, and then developed by Feldman and Moore [3] 

and Schmidt [6] for general cocycles of countable group actions and equivalence 

relations. 

Definition: Let G be a locally compact topological group. The essent ia l  r ange  

of a G-cocycle A is the set ~(A) C G, where G is the one-point compactification 

of G (G = G if G is compact), consisting of those elements M E G such that  

for any neighborhood N ( M )  of M in G and any set E E ~" with ~(E) > 0 there 

exist w E E and n C Z such that Onw E E and Ca(n, ca) C N(M) .  

The following facts are well-known: 

(i) The set E(A) := ~(A) [3 G is a closed subgroup of G. 

(ii) If A is G-cohomologous to a G-cocycle B, then oo E C(A) if and only if 

oo e 
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(iii) A Gl(d)-cocycle is cohomologous to an orthogonal cocycle if and only if 

cc i / s  
Let X be a complete metric space and G a locally compact topological group. 

A c o n t i n u o u s  a c t i o n  of G on X is a group homeomorphism from G into the 

group Homeo(X) of homeomorphisms of X such that the map G • X ~ X, 

(g, x) ~ gx, is continuous. In this case we call X a G-space.  

LEMMA 1.1: Let G be a locally compact topological group, X a G-space, A a 

G-cocycle and f:  12 --~ X an A-invariant function, i.e. a measurable function 

which satisfies A(co)f(w) = f(Ow) for almost all w C fL Then there exists a set 

~-~1 E if7 of full ]?-measure such that for any w C f]l and any M E s 

M f ( w )  = f(oJ). 

Proof." Since X is a separable metric space, the support of f ,  i.e. the set 

~-~1 ;= {tM C ~-~ I ]?({03' E ~ I p ( f ( J ) ,  f(W)) < E) > 0 for any e > 0}, 

has full ]?-measure. 

Fix an arbitrary w C ~1 and an arbitrary M E s Let r > 0 be arbitrary. 

Then the set E C 12 of those w I C [~ such that p ( f ( J ) ,  f (w))  < E has positive 

]?-measure. Since M E $(A), by the definition of $(A), for any r > 0 there exist 

Wl E E and n E Z such that 0nt.Ol C E and 

IIM - (I)A(n, Wl)ll < c1. 

Since f is A-invariant, 

p ( i  f (w) ,  f (w) )  < p ( i f ( o J ) ,  U f ( w l ) )  + p ( i f ( w l ) ,  g~A(n, wl)f(wi))  

+ p(Y(O%J1), f (w)) .  

Since e and el are arbitrary and the action of G on X is continuous, we obtain 

p ( M f ( w ) ,  f (w) )  = O. | 

2. T h e  e s s e n t i a l  r a n g e  is n o t  a c o h o m o l o g y  invar iant  

We settle the problem posed by Feldman and Moore [3] whether the conjugacy 

class of s is a cohomology invariant in the nonabelian case to the negative. 

First note that  assuming A ,-~ B the condition that s is conjugate to s  

is equivalent to the condition that s is conjugate to s  
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THEOREM 2.1: There are Gl(2)-cocycles A and B such that A ~ B but -~(A) is 

not conjugate to -~( B). 

Proos Choose a G/(2)-cocycle A : ~ --+ G/(2) of the form 

(1 
A(w) := 0 1 

in such a way that g(A) is nontrivial. This can be achieved by taking an 

appropriate recurrent additive function a(co) (note that this case is equivalent 

to the one-dimensional abelian case investigated by Dekking [2] and Schmidt 

[5]). 

Choose a measurable map 6': f~ -~ SO(2) such that the function w ~ C(co)el E 

S 1, where el is the first standard basis vector, has support equal to S 1. This is 

possible because f~ is non-atomic. 

Put  B(w) := C(Ow)A(w)C(w) -1 for all co C f~, hence B ~ A. Since the 

deterministic point el E S 1 is A-invariant, the function co ~ C(co)el C S 1 is 

B-invariant. By Lemma 1.1, for any b C $(B),  the equality bC(w)el = C(w)el 

holds almost surely. Since C(co)el has support S 1 this is the case if and only if 

b = cH for some c~ E R \ { 0 } .  On the other hand, detb = 1 because det B(co) = 1 

for all co E fl, hence b -- I. Therefore $(B) = {I} which is not conjugate to E(A). 

t 

It is easily seen that $(B)  = {I, c~} for the cocycle B constructed in the proof 

of Theorem 2.1. 

THEOREM 2.2: There are SO(3)-cocycles A and B such that A ,,~ B but $(A) 

is not conjugate to $(B).  

Proof'. Choose an SO(3)-cocycle A of the form 

(10) 
A(w)=  0 A'(w) 

with A' being an SO(2)-cocycle with nontrivial $(A'). Choose a measurable map 

C: ~2 -+ SO(3) such that the function w ~ C(w)el, where el is the first standard 

basis vector, has support equal to S 2. Put  B(w) := C(Ow)A(w)C(w) -1 for all 

w C ~. Then B ~ A. The same argument as in the proof of Theorem 2.1 implies 

that  s  = {I}. I 

We also note that Proposition 2.1(1) of Schmidt [6] asserting that  a cocycle is 

a coboundary if and only if its essential range is trivial is false in the nonabelian 
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case. Indeed, the SO(3)-cocycle B constructed in the proof of Theorem 2.2 has 

trivial essential range but it is not a coboundary. For, the orthogonal cocycle A 

constructed in the proof of Theorem 2.2 is cohomologous to B and has nontrivial 

essential range. If B is a coboundary then so is A, hence A is cohomologous to 

the trivial cocycle which obviously is minimal, entailing that  its essential range 

is trivial. 

3. T h e  essent ia l  range of induced cocycles 

Let E C 5 c and F(E) > 0. Then the r e t u r n  t i m e  of E is defined by 

J" min{n >_ 11 0ha; �9 E}, if 0'~a~ �9 E for some n �9 N, 
kE(w) I, co, if 0nco ~ E for all n �9 N. 

By the Poincar~ recurrence theorem kE(') is finite almost surely. The induced 

automorphism OE of 0 on E is defined as 

OE(W) := okE(C~ for w �9 G, 

and the probability space (E,.T'E, ]~E) is given by 

P(F) 
J C E : = { A � 9  r I A C E } ,  P E ( F ) . - p ( E )  for a l l F � 9  

Let A be a G-cocycle; then the i nduced  cocycle  over E of A is by defini- 

tion the G-cocycle AE(W) := ~A(kE(W), V), W �9 E, over the induced dynamical 

system (E, .T'E, IPE, OE). 
It is well-known that  for any E �9 3 c and I?(E) > 0, A is cohomologous to B if 

and only if AE is cohomologous to BE. 

Further, if the group G is abelian, then for any E �9 )r with I?(E) > 0 and any 

G-cocycle A we have g(A) = g(AE) (see Schmidt [6, p. 21]). 

We will show that  the latter is in general false in the nonabelian case. 

It follows immediately from the definition that  

r(A)= N 
EE~;P(E)>OweE 

hence 

-g(A) C -S(AE) for any E �9 jc with IP(E) > 0. 

We now prove that  this inclusion can be strict. 
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THEOREM 3.1: (i) There is a Gl(2)-cocycle A and a set E E Jr with ]?(E) > 0 

such that -s is a proper subgroup of-s 

(ii) There is an SO(3)-cocycle A and a set E E Jr with P(E) > 0 such that s  

is a proper subgroup of-s 

Proof." We use the same idea as for the proof of Theorem 2.1. 

(i) Choose any E E ~ w i t h  0 < ]P(E) < 1. Let A be as in the proof of 

Theorem 2.1. Choose a measurable map D: ~ -+ SO(2) such that the function 

w ~ D(w)el ,  where el is the point on the unit circle S 1 corresponding to the first 

standard basis vector, has support equal to S 1, and additionally D(~;) = I for all 

w E E. This is possible because f~ is non-atomic. Put  B(w) = D(Ow)A(w)D(w) -1 

for all w E f L  The same argument as in the proof of Theorem 2.1 implies that 

s  = {I}. On the other hand, BE -~ AE by the choice of D, which implies 

that  $(BE)  = $(AE)  D s hence $(BE) is nontrivial. Therefore, s  is a 

proper subgroup of s  hence s  is a proper subgroup of -s 

(ii) Use the construction of the proof of Theorem 2.2 and the same argument 

as in the proof of part (i) above. I 
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