THE ESSENTIAL RANGE OF A NONABELIAN COCYCLE IS NOT A COHOMOLOGY INVARIANT

BY

L. ARNOLD

Institute for Dynamical Systems, University of Bremen P. O. Box 330 440, 28334 Bremen, Germany email: arnold@math.uni-bremen.de

AND

NGUYEN DINH CONG

Hanoi Institute of Mathematics, P. O. Box 631 Bo Ho, 10000 Hanoi, Vietnam email: cong@thevinh.ac.vn

AND

V. I. OSELEDETS

Department of Mechanics and Mathematics, Moscow State University Moscow 119 899, Russia email: oseled@mech.math.msu.su

ABSTRACT

We show by way of examples that the essential range of a nonabelian cocycle is in general not invariant under cocycle cohomology, and differs in general from the essential range of an induced cocycle.

1. Preliminaries

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a non-atomic probability space, and let θ be an ergodic automorphism of $(\Omega, \mathcal{F}, \mathbb{P})$ preserving the probability measure P.

Received August 25, 1998

A measurable map $A(\cdot): \Omega \to Gl(d)$ from the probability space $(\Omega, \mathcal{F}, \mathbb{P})$ to the general linear group $Gl(d)$ equipped with its Borel σ -algebra generates a *linear cocycle* over the dynamical system (Ω, θ) via

$$
\Phi_A(n,\omega) := \begin{cases} A(\theta^{n-1}\omega) \dots A(\omega), & n > 0, \\ I, & n = 0, \\ A^{-1}(\theta^n\omega) \dots A^{-1}(\theta^{-1}\omega), & n < 0. \end{cases}
$$

Conversely, if we are given a linear cocycle over θ , then its time-one map is a measurable linear map. Therefore, the correspondence between A and Φ_A is one-to-one so that we can identify Φ_A with A and speak of the cocycle A.

The above construction applies to any measurable group G in place of $Gl(d)$, and we shall then speak of a G-cocycle and a G-map.

Since we deal with discrete time cocycles we can always neglect sets of null measure, and often omit the P-almost sure statement in equations between measurable functions.

Two G -cocycles A and B are called G -cohomologous if there exists a G -map C such that for almost all $\omega \in \Omega$

$$
B(\omega) = C(\theta \omega)^{-1} \circ A(\omega) \circ C(\omega).
$$

In this case C is called a G-cohomology and we write $A \sim B$. A G-cocycle which is G-cohomologous to the trivial G-cocycle, i.e. the cocycle identically equal to the identity of G , is called a G -coboundary.

The following notion of essential range was introduced by Araki and Woods [1] and Krieger [4] for studying Radon-Nikodym cocycles, continued by Schmidt [5] for abelian cocycles of Z-actions, and then developed by Feldman and Moore [3] and Schmidt [6] for general cocycles of countable group actions and equivalence relations.

Definition: Let G be a locally compact topological group. The essential range of a G-cocycle A is the set $\overline{\mathcal{E}}(A) \subset \overline{G}$, where \overline{G} is the one-point compactification of G ($\overline{G} = G$ if G is compact), consisting of those elements $M \in \overline{G}$ such that for any neighborhood $N(M)$ of M in \overline{G} and any set $E \in \mathcal{F}$ with $\mathbb{P}(E) > 0$ there exist $\omega \in E$ and $n \in \mathbb{Z}$ such that $\theta^n \omega \in E$ and $\Phi_A(n, \omega) \in N(M)$.

The following facts are well-known:

- (i) The set $\mathcal{E}(A) := \overline{\mathcal{E}}(A) \cap G$ is a closed subgroup of G.
- (ii) If A is G-cohomologous to a G-cocycle B, then $\infty \in \overline{\mathcal{E}}(A)$ if and only if $\infty \in \overline{\mathcal{E}}(B).$

(iii) A *Gl(d)-cocycle* is cohomologous to an orthogonal cocycle if and only if $\infty \notin \overline{\mathcal{E}}(A).$

Let X be a complete metric space and G a locally compact topological group. A continuous action of G on X is a group homeomorphism from G into the group Homeo(X) of homeomorphisms of X such that the map $G \times X \to X$, $(g, x) \mapsto gx$, is continuous. In this case we call X a G-space.

LEMMA 1.1: *Let G be a locally compact topological* group, X a *G-space, A a G-cocycle and f:* $\Omega \rightarrow X$ an *A-invariant function, i.e. a measurable function* which satisfies $A(\omega) f(\omega) = f(\theta \omega)$ for almost all $\omega \in \Omega$. Then there exists a set $\Omega_1 \in \mathcal{F}$ of full P-measure such that for any $\omega \in \Omega_1$ and any $M \in \mathcal{E}(A)$

$$
Mf(\omega)=f(\omega).
$$

Proof. Since X is a separable metric space, the support of f , i.e. the set

$$
\Omega_1 := \big\{ \omega \in \Omega \mid \mathbb{P}(\{\omega' \in \Omega \mid \rho(f(\omega'), f(\omega)) < \varepsilon) > 0 \quad \text{for any} \quad \varepsilon > 0 \big\},\
$$

has full P -measure.

Fix an arbitrary $\omega \in \Omega_1$ and an arbitrary $M \in \mathcal{E}(A)$. Let $\varepsilon > 0$ be arbitrary. Then the set $E \subset \Omega$ of those $\omega' \in \Omega$ such that $\rho(f(\omega'), f(\omega)) < \varepsilon$ has positive **P**-measure. Since $M \in \mathcal{E}(A)$, by the definition of $\mathcal{E}(A)$, for any $\varepsilon_1 > 0$ there exist $\omega_1 \in E$ and $n \in \mathbb{Z}$ such that $\theta^n \omega_1 \in E$ and

$$
||M - \Phi_A(n, \omega_1)|| < \varepsilon_1.
$$

Since f is A -invariant,

$$
\rho(Mf(\omega), f(\omega)) \leq \rho(Mf(\omega), Mf(\omega_1)) + \rho(Mf(\omega_1), \Phi_A(n, \omega_1)f(\omega_1)) + \rho(f(\theta^n\omega_1), f(\omega)).
$$

Since ε and ε_1 are arbitrary and the action of G on X is continuous, we obtain $\rho(Mf(\omega), f(\omega)) = 0.$

2. The essential range is not a cohomology invariant

We settle the problem posed by Feldman and Moore [3] whether the conjugacy class of $\overline{\mathcal{E}}(A)$ is a cohomology invariant in the nonabelian case to the negative.

First note that assuming $A \sim B$ the condition that $\overline{\mathcal{E}}(A)$ is conjugate to $\overline{\mathcal{E}}(B)$ is equivalent to the condition that $\mathcal{E}(A)$ is conjugate to $\mathcal{E}(B)$.

THEOREM 2.1: There are $Gl(2)$ -cocycles A and B such that $A \sim B$ but $\overline{\mathcal{E}}(A)$ is not conjugate to $\overline{\mathcal{E}}(B)$.

Proof: Choose a $Gl(2)$ -cocycle $A: \Omega \to Gl(2)$ of the form

$$
A(\omega):=\left(\begin{array}{cc} 1 & a(\omega) \\ 0 & 1 \end{array}\right)
$$

in such a way that $\mathcal{E}(A)$ is nontrivial. This can be achieved by taking an appropriate recurrent additive function $a(\omega)$ (note that this case is equivalent to the one-dimensional abelian case investigated by Dekking [2] and Schmidt [5]).

Choose a measurable map $C: \Omega \to SO(2)$ such that the function $\omega \mapsto C(\omega)e_1 \in$ $S¹$, where $e₁$ is the first standard basis vector, has support equal to $S¹$. This is possible because Ω is non-atomic.

Put $B(\omega) := C(\theta \omega)A(\omega)C(\omega)^{-1}$ for all $\omega \in \Omega$, hence $B \sim A$. Since the deterministic point $e_1 \in S^1$ is A-invariant, the function $\omega \mapsto C(\omega)e_1 \in S^1$ is B-invariant. By Lemma 1.1, for any $b \in \mathcal{E}(B)$, the equality $bC(\omega)e_1 = C(\omega)e_1$ holds almost surely. Since $C(\omega)e_1$ has support S^1 this is the case if and only if $b = \alpha I$ for some $\alpha \in \mathbb{R} \setminus \{0\}$. On the other hand, det $b = 1$ because det $B(\omega) = 1$ for all $\omega \in \Omega$, hence $b = I$. Therefore $\mathcal{E}(B) = \{I\}$ which is not conjugate to $\mathcal{E}(A)$. **t**

It is easily seen that $\overline{\mathcal{E}}(B) = \{I, \infty\}$ for the cocycle B constructed in the proof of Theorem 2.1.

THEOREM 2.2: There are *SO*(3)-cocycles *A* and *B* such that $A \sim B$ but $\overline{\mathcal{E}}(A)$ *is not conjugate to* $\overline{\mathcal{E}}(B)$ *.*

Proof: Choose an $SO(3)$ -cocycle A of the form

$$
A(\omega) = \left(\begin{array}{cc} 1 & 0 \\ 0 & A'(\omega) \end{array}\right)
$$

with A' being an $SO(2)$ -cocycle with nontrivial $\mathcal{E}(A')$. Choose a measurable map $C: \Omega \to SO(3)$ such that the function $\omega \mapsto C(\omega)e_1$, where e_1 is the first standard basis vector, has support equal to S^2 . Put $B(\omega) := C(\theta \omega)A(\omega)C(\omega)^{-1}$ for all $\omega \in \Omega$. Then $B \sim A$. The same argument as in the proof of Theorem 2.1 implies that $\mathcal{E}(B) = \{I\}.$

We also note that Proposition 2.1(1) of Schmidt [6] asserting that a cocycle is a coboundary if and only if its essential range is trivial is false in the nonabelian case. Indeed, the $SO(3)$ -cocycle B constructed in the proof of Theorem 2.2 has trivial essential range but it is not a coboundary. For, the orthogonal cocycle A constructed in the proof of Theorem 2.2 is cohomologous to B and has nontrivial essential range. If B is a coboundary then so is A, hence A is cohomologous to the trivial cocycle which obviously is minimal, entailing that its essential range is trivial.

3. The essential **range of induced cocycles**

Let $E \in \mathcal{F}$ and $\mathbb{P}(E) > 0$. Then the **return time** of E is defined by

$$
k_E(\omega) = \begin{cases} \min\{n \geq 1 | \theta^n \omega \in E\}, & \text{if } \theta^n \omega \in E \text{ for some } n \in \mathbb{N}, \\ \infty, & \text{if } \theta^n \omega \notin E \text{ for all } n \in \mathbb{N}. \end{cases}
$$

By the Poincaré recurrence theorem $k_E(\cdot)$ is finite almost surely. The induced automorphism θ_E of θ on E is defined as

$$
\theta_E(\omega) := \theta^{k_E(\omega)} \omega \quad \text{for } \omega \in G,
$$

and the probability space $(E, \mathcal{F}_E, \mathbb{P}_E)$ is given by

$$
\mathcal{F}_E:=\{A\in\mathcal{F}|~A\subseteq E\},\quad \mathbb{P}_E(F):=\frac{\mathbb{P}(F)}{\mathbb{P}(E)}\quad\text{for all}~F\in\mathcal{F}_E.
$$

Let A be a G-cocycle; then the **induced cocycle** over E of A is by definition the G-cocycle $A_E(\omega) := \Phi_A(k_E(\omega), \omega)$, $\omega \in E$, over the induced dynamical system $(E, \mathcal{F}_E, \mathbb{P}_E, \theta_E)$.

It is well-known that for any $E \in \mathcal{F}$ and $\mathbb{P}(E) > 0$, A is cohomologous to B if and only if A_E is cohomologous to B_E .

Further, if the group G is abelian, then for any $E \in \mathcal{F}$ with $\mathbb{P}(E) > 0$ and any G-cocycle A we have $\overline{\mathcal{E}}(A) = \overline{\mathcal{E}}(A_E)$ (see Schmidt [6, p. 21]).

We will show that the latter is in general false in the nonabelian case.

It follows immediately from the definition that

$$
\overline{\mathcal{E}}(A) = \bigcap_{E \in \mathcal{F}; \mathbb{P}(E) > 0} \bigcup_{\omega \in E} \{ \Phi_{A_E}(n, \omega) \mid n \in \mathbb{Z} \}.
$$

hence

$$
\overline{\mathcal{E}}(A) \subset \overline{\mathcal{E}}(A_E) \quad \text{for any } E \in \mathcal{F} \text{ with } \mathbb{P}(E) > 0.
$$

We now prove that this inclusion can be strict.

THEOREM 3.1: (i) There is a $Gl(2)$ -cocycle A and a set $E \in \mathcal{F}$ with $\mathbb{P}(E) > 0$ *such that* $\overline{\mathcal{E}}(A)$ *is a proper subgroup of* $\overline{\mathcal{E}}(A_E)$ *.* (ii) There is an SO(3)-cocycle A and a set $E \in \mathcal{F}$ with $\mathbb{P}(E) > 0$ such that $\overline{\mathcal{E}}(A)$ *is a proper subgroup of* $\overline{\mathcal{E}}(A_E)$.

Proof: We use the same idea as for the proof of Theorem 2.1.

(i) Choose any $E \in \mathcal{F}$ with $0 < \mathbb{P}(E) < 1$. Let A be as in the proof of Theorem 2.1. Choose a measurable map $D: \Omega \to SO(2)$ such that the function $\omega \mapsto D(\omega)e_1$, where e_1 is the point on the unit circle S^1 corresponding to the first standard basis vector, has support equal to S^1 , and additionally $D(\omega) = I$ for all $\omega \in E$. This is possible because Ω is non-atomic. Put $B(\omega) = D(\theta \omega)A(\omega)D(\omega)^{-1}$ for all $\omega \in \Omega$. The same argument as in the proof of Theorem 2.1 implies that $\mathcal{E}(B) = \{I\}$. On the other hand, $B_E = A_E$ by the choice of D, which implies that $\mathcal{E}(B_E) = \mathcal{E}(A_E) \supset \mathcal{E}(A)$, hence $\mathcal{E}(B_E)$ is nontrivial. Therefore, $\mathcal{E}(B)$ is a proper subgroup of $\mathcal{E}(B_E)$, hence $\overline{\mathcal{E}}(B)$ is a proper subgroup of $\overline{\mathcal{E}}(B_E)$.

(ii) Use the construction of the proof of Theorem 2.2 and the same argument as in the proof of part (i) above. \blacksquare

References

- [1] H. Araki and J. Woods, *A classification of factors,* Publications of the Research Institute for Mathematical Sciences, Kyoto University, Series A 4 (1968), 51-130.
- [2] F. M. Dekking, *On transience and recurrence of generalized random walks,* Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebeite 61 (1982), 459-465.
- [3] J. Feldman and C. C. Moore, *Ergodic equivalence relations, cohomology, and yon Neumann algebras. I, II,* Transactions of the American Mathematical Society 234 (1977), 289-359.
- [4] W. Krieger, *On the Araki-Woods asymptotic ratio set and nonsingular transformations of a measure space,* in *Contribution to Ergodic Theory and Probability,* Lecture Notes in Mathematics 160, Springer, Berlin-Heidelberg-New York, 1970, pp. 158-177.
- [5] K. Schmidt, *Cocycles on Ergodic Transformation Groups,* MacMillan, Delhi, 1977.
- [6] K. Schmidt, *Algebraic ideas in ergodic theory,* in *Regional Conference Series in Mathematics,* Number 76, American Mathematical Society, Providence, Rhode Island, 1990.