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ABSTRACT

We show by way of examples that the essential range of a nonabelian
cocycle is in general not invariant under cocycle cohomology, and differs
in general from the essential range of an induced cocycle.

1. Preliminaries

Let (2, F,P) be a non-atomic probability space, and let § be an ergodic auto-
morphism of (Q, F,P) preserving the probability measure P.
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A measurable map A(-): = Gl(d) from the probability space (2, F,P) to the
general linear group Gl(d) equipped with its Borel o-algebra generates a linear
cocycle over the dynamical system (€2, 8) via

A0 W) .. A(w), n >0,
ba(n,w) =1¢ I, n=0,
ATHOMW) .. AT ), n<0.

Conversely, if we are given a linear cocycle over 6, then its time-one map is a
measurable linear map. Therefore, the correspondence between A and ®4 is
one-to-one so that we can identify ®4 with A and speak of the cocycle A.

The above construction applies to any measurable group G in place of Gi(d),
and we shall then speak of a G-cocycle and a G-map.

Since we deal with discrete time cocycles we can always neglect sets of null mea-
sure, and often omit the P-almost sure statement in equations between
measurable functions.

Two G-cocycles A and B are called G-cohomologous if there exists a G-map
C such that for almost all w € Q

B(w) = C(0w)~' 0 A(w) 0 C(w).

In this case C is called a G-cohomology and we write A ~ B. A G-cocycle which
is G-cohomologous to the trivial G-cocycle, i.e. the cocycle identically equal to
the identity of G, is called a G-coboundary.

The following notion of essential range was introduced by Araki and Woods [1]
and Krieger [4] for studying Radon-Nikodym cocycles, continued by Schmidt (5]
for abelian cocycles of Z-actions, and then developed by Feldman and Moore [3]
and Schmidt [6] for general cocycles of countable group actions and equivalence
relations.

Definition: Let G be a locally compact topological group. The essential range
of a G-cocycle A is the set £(A) C G, where G is the one-point compactification
of G (G = G if G is compact), consisting of those elements M € G such that
for any neighborhood N(M) of M in G and any set E € F with P(E) > 0 there
exist w € E and n € Z such that "w € E and ®4(n,w) € N(M).

The following facts are well-known:

(i) The set £(A) := E(A) NG is a closed subgroup of G.

(ii) If A is G-cohomologous to a G-cocycle B, then co € £(A) if and only if
o € £(B).
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(iii) A Gl(d)-cocycle is cohomologous to an orthogonal cocycle if and only if
oo ¢ E(A).

Let X be a complete metric space and G a locally compact topological group.
A continuous action of G on X is a group homeomorphism from G into the
group Homeo(X) of homeomorphisms of X such that the map G x X — X,
(g,7) — gz, is continuous. In this case we call X a G-space.

LEMMA 1.1: Let G be a locally compact topological group, X a G-space, A a
G-cocycle and f: Q — X an A-invariant function, i.e. a measurable function
which satisfies A(w) f(w) = f(6w) for almost all w € Q. Then there exists a set
), € F of full P-measure such that for any w € ; and any M € £(A)

Proof: Since X is a separable metric space, the support of f, i.e. the set
O = {weQ|P{w €Q|p(f(w), fw)) <€) >0 forany e>0},

has full P-measure.

Fix an arbitrary w € €y and an arbitrary M € £(A). Let € > 0 be arbitrary.
Then the set E C € of those ' € Q such that p(f(w’), f(w)) < € has positive
P-measure. Since M € £(A), by the definition of £(A), for any €1 > 0 there exist
wi € E and n € Z such that §"w; € E and

”M — @A(n,wl)n < €1.
Since f is A-invariant,

pM f(w), f(w)) < p(M f(w), M f(w1)) + p(M f(w1), @a(n,w1) fwr))
+p(f(0"w1), f(w)).

Since € and £; are arbitrary and the action of G on X is continuous, we obtain

pMf(w), f(w))=0. 8

2. The essential range is not a cohomology invariant

We settle the problem posed by Feldman and Moore [3] whether the conjugacy
class of £(A) is a cohomology invariant in the nonabelian case to the negative.

First note that assuming A ~ B the condition that £(A) is conjugate to £(B)
is equivalent to the condition that £(A) is conjugate to £(B).
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THEOREM 2.1: There are Gl(2)-cocycles A and B such that A ~ B but E(A) is
not conjugate to £(B).

Proof: Choose a GI(2)-cocycle A : @ — GI(2) of the form

Alw) = ( oo )

in such a way that £(A) is nontrivial. This can be achieved by taking an
appropriate recurrent additive function a(w) (note that this case is equivalent
to the one-dimensional abelian case investigated by Dekking [2] and Schmidt
[5])-

Choose a measurable map C: Q@ — SO(2) such that the function w — C{w)ey €
St where e; is the first standard basis vector, has support equal to S*. This is
possible because € is non-atomic.

Put B(w) = C(fw)A(w)C(w)~! for all w € , hence B ~ A. Since the
deterministic point e; € S! is A-invariant, the function w — C(w)e; € S! is
B-invariant. By Lemma 1.1, for any b € £(B), the equality bC(w)e; = Cl{w)e;
holds almost surely. Since C(w)e; has support S? this is the case if and only if
b = ol for some o € R~ {0}. On the other hand, det b = 1 because det B(w) =1
for all w € 2, hence b = I. Therefore £(B) = {I} which is not conjugate to £(A).
n

It is easily seen that £(B) = {I, oo} for the cocycle B constructed in the proof
of Theorem 2.1.

THEOREM 2.2: There are SO(3)-cocycles A and B such that A ~ B but £(A)
is not conjugate to £(B).

Proof: Choose an SO(3)-cocycle A of the form

Alw) = ( 0 A )

with A’ being an SO(2)-cocycle with nontrivial £(A’). Choose a measurable map
C: Q — SO(3) such that the function w — C(w)e;, where e; is the first standard
basis vector, has support equal to S2. Put B(w) := C(fw)A(w)C(w)~?! for all
w € . Then B ~ A. The same argument as in the proof of Theorem 2.1 implies
that £(B) = {I}. |

We also note that Proposition 2.1(1) of Schmidt [6] asserting that a cocycle is
a coboundary if and only if its essential range is trivial is false in the nonabelian
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case. Indeed, the SO(3)-cocycle B constructed in the proof of Theorem 2.2 has
trivial essential range but it is not a coboundary. For, the orthogonal cocycle A
constructed in the proof of Theorem 2.2 is cohomologous to B and has nontrivial
essential range. If B is a coboundary then so is 4, hence A is cohomologous to
the trivial cocycle which obviously is minimal, entailing that its essential range
is trivial.

3. The essential range of induced cocycles

Let F € F and P(E) > 0. Then the return time of E is defined by

k(w) = min{n > 1| 6"w € E}, if6"w € E for somen €N,
B o, if "w ¢ E for all n € N,

By the Poincaré recurrence theorem kg(-) is finite almost surely. The induced
automorphism 0z of 6 on E is defined as

0p(w) == 6@y forw e G,

and the probability space (E, Fg,Pg) is given by

Fg:={A€F|ACFE}, Pg(F):= M for all F € Fg.
P(E)

Let A be a G-cocycle; then the induced cocycle over E of A is by defini-
tion the G-cocycle Ag(w) := ®a(kg(w),w), w € E, over the induced dynamical
system (B, Fg,Pg,0E).

It is well-known that for any E € F and PX(E) > 0, A is cohomologous to B if
and only if Ag is cohomologous to Bg.

Further, if the group G is abelian, then for any E € F with P(E) > 0 and any
G-cocycle A we have £(A) = E(Ag) (see Schmidt [6, p. 21}).

We will show that the latter is in general false in the nonabelian case.

It follows immediately from the definition that

A= (1 Uleasmwlnez},

E€F;P(E)>0weE

hence
E(A) C £(Ag) for any E € F with P(E) > 0.

We now prove that this inclusion can be strict.
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THEOREM 3.1: (i) There is a GI(2)-cocycle A and a set E € F with P(E) > 0
such that £(A) is a proper subgroup of E(Ag).

(ii) There is an SO(3)-cocycle A and a set E € F with P(E) > 0 such that £(A)
is a proper subgroup of E(Ag).

Proof: We use the same idea as for the proof of Theorem 2.1.

(i) Choose any E € F with 0 < P(E) < 1. Let A be as in the proof of
Theorem 2.1. Choose a measurable map D: 2 — SO(2) such that the function
w - D(w)e1, where e, is the point on the unit circle $! corresponding to the first
standard basis vector, has support equal to S?, and additionally D(w) = I for all
w € E. This is possible because {2 is non-atomic. Put B(w) = D(fw)A(w)D(w)™!
for all w € . The same argument as in the proof of Theorem 2.1 implies that
E(B) = {I}. On the other hand, Bg = Ag by the choice of D, which implies
that £(Bg) = £(Ag) D £(A), hence £(Bg) is nontrivial. Therefore, £(B) is a
proper subgroup of £(Bg), hence £(B) is a proper subgroup of £(Bg).

(ii) Use the construction of the proof of Theorem 2.2 and the same argument
as in the proof of part (i) above. |
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